
1

Introduction

Door locks, gated communities, guard dogs, access cards, and
identification badges are all testaments to a physically insecure
world. Likewise, the need for similar protective mechanisms is no
less significant in that part of our information age which is not
physical. Our digital world is every bit as insecure as our physical
one. The information age, in fact, is an extension of the industrial
age, characterized by the focus on production of physical goods.
Today, most manufacturing efforts are augmented and in some
cases managed by components of the information age.

Ubiquitous software is a characteristic of the information age. It
has become a crucial component of day to day living for most
of the world, and it heavily influences the world’s very social and
economic fabric. Software is used today for communications,
production, financial transactions, transportation, and utilities to
name just a few of its varied and countless uses. With software,
technical solutions to business problems are possible. And, with
software, we can all be connected.

And while a lot of effort goes into designing, developing and
deploying software, with internetworking connectivity (Internet),
making the world smaller, there is little to nothing being done
to make it any more secure. Disney’s famous tune that asserts
incessantly to visitors at the Disney theme parks that, “It’s a small
world, after all” can accurately be sung today with the words “It’s
an insecure world, after all.”

(ISC)2®’s whitepaper, The Need for Secure Software addresses the
“Why” of securing software. It delves into the drivers of software
assurance, the importance of data security, and covers the policy,
process, and people aspects of software assurance. (ISC)2’s

whitepaper, Software Assurance: A Kaleidoscope of Perspectives
addresses the “What” of software assurance in terms of the
varied perspectives that need to be considered when building
secure software. This whitepaper on Being Secure in an Insecure
World will address the “How-Tos” of designing, developing,
and deploying secure software.

SwAconomics – Insecure Software Cost

Software is merely sets of instructions given to computers to be
followed as instructed. These instructions are designed by humans
and hence software is only as strong or as weak as the designer.
As somebody once said, expecting a computer to think is akin to
expecting a submarine to swim. Current trends of software insecurity,
as reported in the press highlight the unfortunate reality that software
today is inherently not as secure as it should be. In fact, the industry is
still maturing in the arena of software security and has a lot of ground
to catch up. The lack of globally enforceable regulations and legal
jurisprudence only exacerbate the situation.

David Rice, former cryptographer for the NSA and Navy, author
of Geekonomics: The Real Cost of Insecure Software, approximates,
as reported on Forbes.coma, that the total economic cost of
security flaws in software is around US$180 billion a year.
While the economics of software assurance (SwAconomics) can
be extrapolated from the aggregate amount of fines levied on
organizations that have experienced a breach due to insecure
software, that still doesn’t provide a complete view of the cost
of insecure software. The real cost, not as neatly quantifiable, is
the extent of reputational damage and loss of customer trust.
For example, arguably the most noted U.S. customer data breach
incident occurred at TJX stores where the recovery cost from
that particular breach is estimated to be approximately US$216
million. But the more significant problem in the long run will be
gaining back the confidence of the customers, which may prove
difficult if not altogether impossible.

Unambiguous client requirements and solid design and
development can result in quality software. It is important, however,
to recognize that quality software does not always imply secure
software. This is evident from the fact that there is some extremely
useful and productivity-enhancing software currently on the market,
but software that has nevertheless been exploited from a security
standpoint or has the potential to be exploited. The inverse
however is true. Secure software implies quality software; quality
in terms of confidentiality (not disclosing information), integrity
(not allowing unintended alterations), and availability (reliability).

Software Security:
Being Secure in an Insecure World

Mano Paul, CISSP, MCAD, MCSD, Network+, ECSA

2

The Blame Game

When insecure software is exploited or has the potential to
be exploited, who is to be blamed? Is it the product manager
who did not factor in the necessary security controls when
translating business requirements into functional requirements?
Is it the project manager who did not factor in adequate time and
resources for ensuring that security design and architecture review
was adequately performed? Is it the developer who did not write
secure code? The tester who did not validate security functionality?
Or is it the operations personnel who are responsible to maintain
security? Or, taking things a step higher, maybe it’s really the
executive responsible for the delivery of the software. In some
sense, is the company as a whole responsible?

Former Burton Group Vice President, and founder of Security
Curve, Diana Kelley expresses in her acclaimed paper, Application
Security: Everybody’s Problemb that software (application) security
is the responsibility of all the stakeholders that are influencers
in the software development life cycle (SDLC). She goes on
to state that enterprises that understand how to create more
secure applications can benefit from greater efficiencies in the
development process, thereby reducing the need for post-
deployment security software whose function is to protect and
patch insecure software.

In other words, focusing after the fact on who’s to blame does not
properly address the issue of insecure software. The “blame game”
keeps the organization in a circuitous cycle of the inefficient and
reactive “patch and release” modus operandi.

Secure Practices in the SDLC

While some of the insecurity in software could be the result
of the technology chosen, it is important to note that software
products are predominantly insecure due to two other elements –
people and processes. Any software is the result of a confluence
of people, process, and technology. Secure software is the result
of educated and informed people implementing hack-resilient

processes using inherently secure technologies to provide
solutions to a business need.

Security is a process; from requirements to release it is to be
woven into the SDLC. Software products built today are primarily
focused on business functionality and features. Even though the
SDLC may cover quality-control planning and testing, seldom does
it incorporate security holistically. From requirements to release,
there are a lack of adequate security controls that need
to be built into the SDLC, and security requirements are in many
cases non-existent. Use cases are not complemented with their
inverse misuse cases. Threat modeling, when present, is often
performed by a trained security professional instead of members
from the development team and when subsequent changes are
made by the developers, they are rarely retrofitted into the threat
model. Developers are driven to deliver functionality with deadline
and scope constraints, pushing the writing of secure code to the
sidelines. Testers are often inadequately trained to look for security
vulnerabilities. Finally, when developed and released to the public
as commercial-off-the-shelf (COTS) software, or deployed into
production, as in the case of internal business software, software
that does not factor in security through its life cycle is often rife with
vulnerabilities that practically implore an attacker to exploit them.

The following sections cover the various aspects of secure practices
through the different phases of the SDLC.

1. Requirements Gathering

Not incorporating the core tenets of security (confidentiality,
integrity, availability, authentication, authorization, and auditing) in
the requirements phase of a software development project will
inevitably result in software that is insecure. Since software, like
anything else that goes through a manufacturing process, is designed
and developed to a blueprint, it is of paramount importance that
security requirements are determined alongside the functional and
business requirements. In other words, security requirements need
to be an integral part of the blueprint itself, as shown in table 1.

SDLC Phase Security Control (What to do?)
Recommendation – Tools/Processes
(How-Tos)

Requirements
Gathering

Business Partner Engagement
Identify Policies and Standards
Identify Regulatory, Compliance, and Privacy
Requirements
Develop CIA* Objectives
Develop Procurement Requirements
Perform Preliminary Risk Assessment

Business Partner Questionnaire
Policy/Standards Checklist
Local and International Checklists
CIA Questionnaire
Data Classification
Procurement Checklist
Rapid Risk Triage / Prototype or Questionnaire

Table 1. Tools and Process Recommendations for the Requirements Gathering Phase of
the SDLC to Build Secure Software.

* Confidentiality, Integrity, and Availability

3

a. Engage the Business Partner or Client
In addition to ensuring that the software developed will meet the
business or client functionality requirements, engaging the business
partner during the requirements-gathering stage to address
security aspects will aid in the partner’s understanding of the risk,
and assist in eliciting the protection needs of the software. Using
a questionnaire or checklist in language that the business partner
understands (without going too deep into technical or security
jargon) works well in uncovering security requirements.

b. Identify Applicable Policies and Standards
It is critically important that software developed is done by
following established policies and standards and is compliant with
audit requirements. For example, if your authentication standard
lists the need to have multi-factor authentication, then the
software you build should be compliant to that standard.

c. Identify Applicable Regulatory, Compliance,
 and Privacy Requirements
It is important that software requirements take into consideration
the regulatory (legal), compliance, and privacy requirements. These
considerations should not only be local but also international.

d. Develop Confidentiality, Integrity, and
 Availability Objectives
During the requirements definition phase, it is essential to develop
the Confidentiality, Integrity, and Availability (CIA) objectives of
the software. Is the data or information open for viewing by all or
should it be restricted (confidentiality requirement)? What are the
factors that allow for authorized alterations, and who is allowed
to make them (integrity requirement)? What is the accessibility

of the software and what is the allowable downtime (availability
requirement)? In addition to the CIA requirements, it is also
necessary to consider the software Authentication aspect (proving of
claims and identities), Authorization aspect (rights of the requestor),
and Auditing aspect (accountability or building historical evidence).

Data classification is a proven methodology in assisting with the
determination of the CIA goals and objectives. It can also help
in prioritizing and determining the appropriate level of security
controls to be incorporated into the software. Sun Microsystems’s
whitepaper, Best practices in data classification for information
lifecycle managementc delves into the best practices in data
classification and addresses the need, process, and benefits of it.

e. Develop Procurement Requirements
If software is to be bought, rather than built in-house, developing
the procurement requirements is important. Care must be taken
to ensure that new levels of threat or risk are not introduced into
the existing environment in which the software will run. A clear
understanding of the current environment is necessary and engaging
the architecture, networking, engineering, operations, and security
team along with the procurement group aids in this objective.

f. Perform Preliminary Risk Assessment
A preliminary risk assessment is necessary to determine the
fundamental security necessities of the software. This risk
assessment should not be onerous, but just thorough enough
to get a picture of the risk that the software will introduce. A
questionnaire uncovering the essential requirements of CIA and
a rapid risk triagingd model are both useful methodologies for risk
assessment.

SDLC Phase Security Control (What to do?)
Recommendation – Tools/Processes
(How-Tos)

Design Misuse Case Modeling
Security Design and Architecture Review
Threat and Risk Modeling
Security Requirements and Test Cases Generation

Requirements Traceability Matrix
Security Plan
Threat Model
Security Test Cases Template

Table 2. Tools and Process Recommendations for the Design Phase of the SDLC to Build
Secure Software

2. Design

 It’s a given that if the core tenets of security are not included as
requirements, then the software when designed is probably not
going to have them. But even in cases where security requirements
are determined, they often run the risk of being dropped from
the feature specifications or being lost in translation due to the
constraints of time and budget, and/or a lack of understanding of
their importance by the business or client. Project managers should

plan and allow for time and budget to ensure security requirements
are not ignored.

Applying to software security the 80-20 rule (Pareto Principle)
which states that 80% of the effects come from 20% of the causes,
it’s no surprise that 80% of the software defects arise from 20%
of the design flaws. Addressing the 20% of design flaws during
design can mitigate the exposure factor considerably.

4

a. Modeling Misuse Cases
From the vantage point of security it’s not only important that the
functionality of the software is depicted in use cases, but it’s critical
that the inverse of the use cases (misuse cases) be modeled to
understand and address the security aspects of the software.
Use of a requirements traceability matrix will assist in tracking
the misuse cases to the functionality of the software.

b. Conduct Security Design and Architecture
Reviews
It’s important to recognize that, in most software development
projects, time and budget are fixed, and the introduction of
security requirements are generally not well received by software
development teams. The best place to introduce the “security”
design and architecture review is when the teams are engaged in
the “functional” design and architecture review of the software.
When conducting a security review, the assurance requirements
of the software should be considered bearing in mind the cost
and time constraints. Generating a security plan from the review
is a good start for documenting the security design and using it as
a check-and-balance guide during and after development.

c. Perform Threat and Risk Modeling
Threat modeling includes determining the attack surface of the
software by examining its functionality for trust boundaries, entry
points, data flow, and exit points. It is to be performed only after
the functionality requirements are complete, so that the threat
model is based on the functionality of the software. Threat
modeling is useful for ensuring that the design complements the
security objectives, making trade-off and prioritization-of-effort
decisions, besides reducing the risk of security issues during
development and operations. Risk modeling of software can
be accomplished by ranking the threats as they pertain to your
organization’s business objectives, compliance and regulatory
requirements and security exposures.

d. Security Requirements and Test Cases Generation
Modeling of misuse cases, security design and architecture
reviews, and threat and risk modeling can all be used to generate
the security requirements that the developer should write code
for, and to determine the security test cases that should be
executed during testing. Using a scenario-based security testing
template is effective in ensuring that the bare minimal security
test cases are performed in every software development effort, as
well as saving time in generating test cases that are essential.

SDLC Phase Security Control (What to do?)
Recommendation – Tools/Processes
(How-Tos)

Development Writing Secure Code
Security Code Review
Security Documentation

Security Checklist
Code Scanners

Table 3. Tools and Process Recommendations for the Development Phase of the SDLC
to Build Secure Software.

Testing Security Testing
Redo Risk Assessment

Security Test Cases

3. Development/Testing

The software written should be secure by design, secure in
development, and secure by default. Defense in depth and least
privilege should be to the forefront when it comes to writing
secure code. Layered defense should be built into the software
to avoid any one single point of failure.

a. Writing Secure Code
Contrary to popular opinion that software security is all about
writing secure code, and although it is a critical step in SDLC,
secure code writing is only one of the various steps necessary
to ensure security in software. Software developed should at the
bare minimum be written to mitigate the common and prevalent

threats in the industry, such as overflow attacks, injection attacks,
scripting attacks, and remote code execution attacks to name a
few. Using a security checklist can ensure that minimum security
baselines pertaining to writing secure code are covered.

b. Security Code Review
Automated or manual code reviews should be performed during
the development phase of the project to make sure vulnerabilities
in the code are discovered prior to release or deployment. When
code review is automated, it’s important to bear in mind that it
should be done in addition to manual reviews, and not in lieu of
them. Control checks by a human should still take place. Special
attention should be given to false positives and false negatives of
the automated code reviews.

5

c. Security Documentation
The security plan generated during the design phase of the project
must be revisited and adjusted if necessary. It is imperative that any
change to the security plan be made only in those situations where
achieving the security objective is improbable or infeasible due to
extraneous factors beyond the scope of the project.

d. Security Testing
Critically important in the life cycle of a secure software
development project is that security testing be performed in
addition to functionality testing. Educating the testers to become
software security testers not only boosts the technical aptitude

of the quality assurance organization, but also results in software
products that are more secure. Capturing the security testing
requirements in the design phase and executing them in the
testing phase are vitally important.

e. Redo Risk Assessment
Post development, a risk assessment will help identify the risks that
have been mitigated and the ones that still need to be addressed.
This will give the SDLC project stakeholders the ability to decide
on the acceptable risk level and whether or not to release/deploy
the software.

SDLC Phase Security Control (What to do?)
Recommendation – Tools/Processes
(How-Tos)

Deployment Secure Installation
Vulnerability Assessment and Penetration Testing
Security Certification and Accreditation (C&A)
Risk Adjustments

Environment Configuration Document
Vulnerability Assessment Plan
Penetration Testing Procedures
C&A Workflow

Table 4. Tools and Process Recommendations for the Deployment Phase of the SDLC
to Build Secure Software.

4. Deployment

All efforts to design and develop secure software are rendered
futile if the software is not securely deployed.

a. Secure Installation
Software development that does not factor in least privilege
often produces software that runs without any issues in a lax
development environment. But when deployed to a more
tightly controlled and secure production environment, such
software fails. In such situations, administrators often are forced
to reduce the tight control or increase the rights with which
the software will run, both of which are forms of insecure
installation. Software should therefore be tested in environments
simulating the production environment, be it system integration
testing environment or the user-acceptance testing environment.
Installation should never reduce the security configuration of the
environment, thereby increasing the attack surface of the software
and the overall risk to the environment.

b. Vulnerability Assessment and Penetration
Testing
Vulnerability assessments (VA) and penetration testing (PT)
should be performed to determine the risk and attest to the
strength of the software after it has been deployed. Although
vulnerability assessments and penetration testing are used
synonymously by many, they are not the same. Vulnerability
assessment is a process of identifying known weaknesses of

software. Penetration testing on the other hand is testing
the security of the software, simulating a malicious attacker.
A part of vulnerability assessment can be penetration testing.

c. Security Certification and Accreditation (C&A)
The National Institute of Standards and Technology (NISTe)
describes security certification as the process that ensures
controls are effectively implemented through established
verification techniques and procedures, giving organization officials
confidence that the appropriate safeguards and countermeasures
are in place as means of protection. This in essence is a formal
methodology and has the same output as that of a vulnerability
assessment – the weakness of software. Accreditation on
the other hand is the provisioning of the necessary security
authorization by a senior organization official to process, store,
or transmit information. This is based on the verified effectiveness
of security controls to some agreed-upon level of assurance
and an identified residual risk to agency assets or operations.
As deemed necessary, both certification and accreditation
should be performed before deploying software.

d. Risk Adjustments
Vulnerability assessments, penetration testing, certification and
accreditation exercises will all provide insight into the residual
risk introduced by software. Necessary adjustments of the risk
profile should be made. Contingency plans and exceptions should
be generated should the residual risk be above the acceptable
threshold.

6

SDLC Phase Security Control (What to do?)
Recommendation – Tools/Processes
(How-Tos)

Maintenance Change and Configuration Control
Recertification & Reaccreditation
Incident Handling
Auditing
Continuous Monitoring

Change Control Process
C&A Workflow
Incident Management Plan
Audit Review Plan
Monitoring Procedures

Table 5. Tools and Process Recommendations for the Maintenance Phase of the SDLC
to Build Secure Software.

5. Maintenance

Confucius said, “The superior man, when resting in safety, does not
forget that danger may come. When in state of security he does
not forget the possibility of ruin. When all is orderly, he does not
forget disorder may come. Thus his person is not endangered and
his states and all their clans are preserved.” Applying this wisdom,
it is easy to see that when it comes to software security, not only
should software be designed, developed, and deployed securely,
but it should also be operationally secure and should maintain the
level of security as intended.

a. Change Control and Configuration Control
Proper change control and configuration control should be in
place to ensure that only approved changes are made to the
code base of the software. Versioning of software with auditable
check-in and check-out procedures is essential. Direct access
to production code should be prevented and be on a “need to
know” basis with explicit authorization and controlled scrutiny. In
cases when controlled and scrutinized access to production code
is granted, it should be for primarily troubleshooting purposes (if
the issue cannot be recreated in the testing environments) and
no change should be allowed in the production environment
directly. Changes that need to be made should be made in the
development environment, tested thoroughly in the testing
environment and then migrated to the production environment
during the approved change windows.

b. Recertification and Reaccreditation
Upon any change, should there be a need to re-certify and
re-accredit the software, necessary processes should be
established and followed to get certification and accreditation.

c. Incident Handling
An Incident Management plan is essential and should be established.
The plan should include the reporting procedures, escalation paths,
assurance of anonymity (if needed), abuse reporting emails, hotlines,
and other mechanisms to encourage individuals to report the issue,
when an incident occurs or is suspected. Reported incidents should
be managed effectively by controlling information to only the
needed parties.

d. Auditing
Auditing refers to the logging of necessary information that can
be used to build historical evidences of changes. What to log and
how long to retain logs is based on the criticality of the changes
being made, authorized or unauthorized and the records
retention and information management guidelines of your
organization. All administrative functionality and business-critical
activities should be logged. The date, time, and user or process
that made the changes should be logged. Special care should be
taken to ensure that the log files and records are secured as well,
as they may contain sensitive information. Secure software records
logs by default. Audit logs can also be used as detective controls
in the event of an incident.

e. Continuous Monitoring
Through recurrent testing and assessment, security controls built
into the software are validated for their effectiveness. Operations
personnel should monitor deployed software to ensure that
software security is not affected or reduced over time. Any
unintended behavior of the software should be reported to the
software development team and an investigation to determine
cause should be undertaken.

7

6. Disposal

Just as it is important to build secure software, it is equally
important to securely dispose of software once its usefulness and
regulatory obligations have been met. Disposal implies not just
data sanitization and destruction, but also archiving.

a. Secure Data Archiving and Sanitization
It is vital to ensure that when software is disposed, information
that would be needed at a later timeframe is archived for future
retrieval by secure means. Archived information and software
should be treated and protected with the same control measures
as one would employ with confidential information. The archival
requirements should be in accordance with the organization’s
record management policy or standards. Sanitization of data refers
to overwriting or destruction of information no longer necessary
to be preserved.

b. Secure Disposal
In cases where data and software is highly sensitive and no longer
necessary, it must be physically destroyed. If the software was used
to store data in offline media, care should be taken to destroy the
storage media and if necessary the software as well.

A New Culture: Software Lifecycle Influencers with
a Security Mindset

When it comes to building secure software, people can be the
strongest force or the weakest link. A primary shift is necessary
in the mindset of all of the stakeholders in the SDLC process,
one that makes security second nature in the software they
are responsible for building. For such a shift to happen, these
stakeholders need to be trained and certified in software
security. The client or customer should be aware of the need and
importance of incorporating security into the software product
they request. The requirements analyst should be trained to solicit
and translate functional requirements into security requirements.
The project manager should be versed in making necessary

project-related decisions appropriate to security within the
constraints of scope, schedule, and budget. The coder should be
trained to write secure code and the tester should be trained to
validate that the code is secure. Operations personnel should be
trained in least privilege computing and skilled in monitoring and
disposing of software securely. Effective training and education
should target changing the behavior of these influencers to include
security in the software by default.

Conclusion

With software deeply impacting our everyday lives, the need
for it to be secure is an absolute necessity. The real cost of
insecure software is not merely the quantifiable fines imposed
on the negligent, but also the loss in customer confidence, the
loss in reputational damage and brand, loss that, in many cases, is
irreparable. Playing the blame game as to who is truly responsible
for insecure software is reactive and not as effective as building
software securely by weaving security processes through the
software lifecycle. From requirements gathering to disposal,
security should be built into the software.

A new culture reflecting a change in the mindset of those involved
in the SDLC is necessary. This culture should promote security in
the SDLC while understanding the risk of software built without
security in mind. Awareness, education, and certification programs
built around security in the SDLC are critically necessary,
and (ISC)2‘s Certified Secure Software Lifecycle Professional
(CSSLPCM) certification program may be the harbinger in creating
this culture and addressing the need for secure software. Such a
change in people’s mind will be the first step in Being Secure in an
Insecure World.

SDLC Phase Security Control (What to do?)
Recommendation – Tools/Processes
(How-Tos)

Disposal Secure Archiving
Data Sanitization
Secure Disposal

Records Management Policy
Data Sanitization and Disposal procedures

Table 6. Tools and Process Recommendations for the Disposal Phase of the SDLC to
Build Secure Software.

8

About (ISC)²®

The International Information Systems Security Certification
Consortium, Inc. [(ISC)2®] is the globally recognized Gold Standard
for certifying information security professionals. Founded in 1989,
(ISC)² has certified over 60,000 information security professionals
in 138 countries. Based in Palm Harbor, Florida, USA, with offices
in Washington, D.C., London, Hong Kong and Tokyo, (ISC)2
issues the Certified Information Systems Security Professional
(CISSP®) and related concentrations, Certified Secure Software
Lifecycle Professional (CSSLPCM), Certification and Accreditation
Professional (CAP®), and Systems Security Certified Practitioner
(SSCP®) credentials to those meeting necessary competency
requirements. (ISC)² CISSP and related concentrations, CAP, and
the SSCP certifications are among the first information technology
credentials to meet the stringent requirements of ANSI/ISO/IEC
Standard 17024, a global benchmark for assessing and certifying
personnel. (ISC)² also offers a continuing professional education
program, a portfolio of education products and services based
upon (ISC)2’s CBK®, a compendium of information security topics,
and is responsible for the (ISC)² Global Information Security
Workforce Study. More information is available at
www.isc2.org.

About the Author

Mano Paul, CISSP, MCAD, MCSD, Network+, ECSA is CEO
and President of Express Certifications and SecuRisk Solutions,
companies specializing in professional training, certification,
security products and security consulting companies. His security
experience includes designing and developing software security
programs from Compliance-to-Coding, application security risk
management, security strategy and management, and conducting
security awareness sessions, training, and other educational
activities. He is a contributing author for the Information
Security Management Handbook, writes periodically for
Certification, Software Development and Security magazines
and has contributed to several security topics for the Microsoft
Solutions Developer Network. He has been featured in various
domestic and international security conferences and is an
invited speaker and panelist in the CSI (Computer Security
Institute), Catalyst (Burton Group), TRISC (Texas Regional
Infrastructure Security Conference), SC World Congress,
and the OWASP (Open Web Application Security Project)
application security conferences. He can be reached at
mano.paul@expresscertifications.com or
mano.paul@securisksolutions.com

a A Tax on Buggy Software.
http://www.forbes.com/2008/06/26/rice-cyber-security-tech-security-cx_
ag_0626rice_print.html

b Application Security: Everybody’s Problem.
http://www.burtongroup.com/Research/PublicDocument.aspx?cid=763

c Best Practices In Data Classification For Information Lifecycle Management.
http://www.sun.com/storagetek/white-papers/Best_Practices_Data_
Classification_ILM.pdf

d Risk Triage and Prototyping in Information Security Engagements.
http://www.cisco.com/web/about/security/intelligence/risk-triage-whitepaper.
html

e NIST 800-64 REV 1. Security Considerations in the Information Systems
Development Life Cycle.
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf

“Security is just another attribute of your
software like usability, performance, reliability,

scalability, etc. The idea of incorporating
security into the SDLC begins with evaluating
the relative importance of this attribute on an
application and then going on to evaluating
and incorporating controls in-line with that.”

Talhah Mir
Sr. Program Manager Lead

Information Security Awareness

